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. Summary

A shaping filter is a linear system which transforms stationary
white noise into a possibly nonstationary random process having a given
covariance r(t,T). We show that stabllity of a shaplng filter, appropri-
atsly defined, may be determined by'inspection of r(t,T). Stability is
defined in the sense that any square-integrable input produces a bounded

output (abbreviated L,IBO).

2
The following results are proved:

1. A system with impulse response h(t,T) is LQIBO stable if and only

if f h (tyT)dT S C < ew for all t 2> t H t is a fixed initial time

a(perhaps -o),

:ﬁ2. If r(t t) C<w for all t2 t » the shaping filter is L,IBO stable.

2
3. (Converse to 2) If the shaping fllter is (uniformly) completely

controllable, L,IBO stability implies that r(t,t) < C < = for -« (<)

2

<t, St | | ‘
Also included in the hypotheses of 3 is an assumption to the effect

that the system is internally-linear. The results of the paper apply

to distributed as well as lumpsd systems. Dstailed knowledge of the |

‘impulse response (or state-variable equations) is not required.
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Science Foundation under grant GK-2283.




Reprinted by permission from IEEE TRANSACTIONS ON CIRCUIT THEORY
Vol. CT-16, Number 3, August 1969

Copyright © 1969, by the Institute of Electrical and Electronics Engineers, Inc.
PRINTED IN THE U.S.A.

Stability Properties of Shaping Filters

It is often of interest for various signal processing applications
to determine a stable shaping filter for a covariance function r(?, ),
i.e., to determine a stable linear system that transforms stationary
white noise into a random process having the convariance (¢, 7)
(1], [2). We show here that stability of a shaping filter, appropriately
defined, may be determined by inspection of the covariance, provided
that a shaping filter for (¢, +) is known to exist.

Let y(¥) for — = < t) € ¢t < = be a zero-mean, possibly non-
stationary random process with covariance

Ely@y(n] = r(t, ) )

deﬁned_ e.verywhere ; i.e,, r(¢, 7) is finite for finite ¢ and 7. Suppose a
nonanticipative shaping filter for r(¢, 7) exists, having k(f, ) as its
impulse response. Then
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b, toy ) + [ Bl Na®) N, for ¢k,
y(@) = e )

0, for t < {,.

The function «(\) represents a stationary white noise input. The
parameter z, assumes the values of intial conditions within the
shaping filter, generally random variables uncorrelated with «(:),
and may be regarded as the value of a state variable at ¢ = to. The
“transient response’” f(f, £y, 7o) represents the output effect of the
internal initial conditions.

An elementary but important consequence of (1) and (2) is that

T(t, 7') = E[f(ti lo, Io)f(T, lo, xO)]
min (t,1)
+ [ Wt N(r, N, B)

which relation is used below to determine a stability property of
the shaping filter.




CORRESPONDENCE

Stability of a system is defined here in the sense that, beginning
from the zero state, any square-integrable input produces a bounded
output. Stability in this sense will be abbreviated as L,1BO stability.
This type of stability has not frequently been encountered in the
linear system literature. However, if certain regularity conditions
are imposed on the system coefficients or on the impulse responses,
then I1,IBO stability is equivalent to the more familiar concept
of bounded-input bounded-output (BIBO) stability [3], [4]. L.IBO
stability is formally defined below.

Definition 1

Let 2(t, u) represent the zero-state response of a linear system to
the input u(t) for {, < ¢ < . The system is L,IBO stable if and
only if for any u(t) staisfying

f W dt < My <

te

for some finite M,, there exists another constant M, (dependent
upon M) such that |2(¢, u)]| € M, < « forallt > t,.

A necessary and sufficient condition for LyIBO stability is estab-
lished in the following theorem.

Theorem 1
A linear system with impulse response A(t, 7) is L,IBO stable
if and only if
$
[ B nar<c <o, forall 120
te
Proof of Sufficiency: Let u(t) satisfy
f POALM < .

te

Then from the Schwarz inequality,

At w) = [ f h(t, 7)u(r) dr]’
< j: R'(t, 1) dr j: u(r) dr

<[ wndr< oM< .
te
Proof of Necessity: Let

f' R, 1) dr

be unbounded. We will construct an input that produces an output
exceeding any given bound. Let

cW) = +[ f R, 7) dr]m,

an unbounded function by assumption. Hence, for any M > 0
there is a T' > {, such that C(T') > M. Holding T as a fixed param-
oter, define a sequence of inputs as

and note that

j: "0 dt = CUT)/CNT) = 1,

for all T' > t,. The output #(f, ur) evaluated at t = T is given by
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2T, ug) = f BT, /O dr = CT) > M > .

Since M may be chosen arbitrarily large, the system is not L.IBO
stable.

Stability of a shaping filter is guaranteed by uniform boundedness
of the covariance function, as is now demonstrated.

Theorem 2

Let a shaping filter for the covariance (¢, r) exist! for all ¢ > #,.
Ifrtt) < C < o forallt > &, the shaping filter is L,IBO stable.
Proof: From (3)

) = B o 20) + [ KGN @
Thus )

f RPE,NdN<rit,t) <C < =,

which, from Theorem 1, proves the assertion.

Note that the results above remain valid in the limit as ¢, ap-
proaches — o, Theorem 2 has a weak converse, which is proved
below. This converse will be considered for two cases: finite ¢, and
the limiting case as ¢, approaches — «, For this purpose, it is con-
venient to introduce the following three assumptions, which restrict
the structure of systems in the class under consideration.

S1—For any zo, to, and ¢, there is an z, such that f(2, to, zo) =
f (tv tl; zl)-

C1—The system is completely controllable at f; with respect to
the parameter z. That is, given any z,, there is a finite {, > ¢, with
t, independent of x,, such that the system may be transferred from
the zero state at ¢, to the z; state at £, by application of some finite
energy input u(¢) forf, <t < #.

C2—The system is uniformly completely controllable with respect
to z. That is, for any ¢ and z;, thereis a {; > ¢ for which4 - ¢t < T,
with 7 independent of ¢ and x,, such that the system may be trans-
ferred from z = 0 at t to z = z; at 4 by application of some bounded
energy input u,(-) where the energy bound is independent of t.

Energy is to be defined as

E f“ uw?(t) di;

this definition therefore includes the possibility that u(f) represents
a random process and z; a random variable.

For finite differential systems, the usual definitions of complete
and uniform complete controllability imply C1 and C2, respectively
(5]. Assumption S1, expressing the state-variable nature of the
parameter z, is certainly satisfied by finite linear differential systems
and is also satisfied, for example, by the class of infinite dimensional
systems considered in {6].

The following result establishes the converse to Theorem 2 in
the first case, that is, when ¢, is finite.

Theorem 3

Let a shaping filter for r(¢, r) exist for allZ > t > — » and satisfy
S1 and C1. Then r{t, t) is bounded for ¢ > ¢, if the shaping filter
is LyIBO stable.

Proof: Assumptions S1 and C1 imply the existence of a finite &,
an zi, and u(t) such that

1, 29 = 10t 120 = [ B, D) de

for all ¢ > t,. The latter equality follows because f(¢, &, z;) represents
the output effect of the initial condition z,. From the Schwarz

inequality

! Here and in succeeding theorems, the existence of a shaping filter implies that
(3) has & real-valued solution for the impulse response A (¢, 7).
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(2, b, x0) < ‘/:‘ R’(t, 7) dr ‘/:h u?(r) dr

gﬁ#mﬂdtf

1 ¢

wW(r)dr <C f u?(r) dr.
. te
The last step follows from the stability hypothesis by Theorem 1.

For randornr u(t), we have

BfG, o 20) S OB [ () dr <

for all ¢ > #, which implies from (4) that r(¢, ) is bounded for all
t > t. But by assumption, r(¢, ) is finite for ¢ finite. Hence, r(¢, ¢) is
bounded for all ¢ > t.

Assumption C1 is needed in the proof only to establish a bound
on the transient response. If C1 is violated, the theorem is generally
invalid. Consider for example the covariance r(¢, 7} = Re¢*) with
R > 0. A shaping filter may be realized as

#(f) = 0
y(t) = z(t)e’,

with z(ty) = zo, & zero-mean random variable for which E[z?] = R.
The system is autonomous (thus it violates C1), has an identically
vanishing impulse response, and is certainly L,IBO stable. However

E[fz(t; lo, xo)] = Re“)

an unbounded function. This example presents one function in the
class of covariance functions considered in [3], which lead to finite
dimensional autonomous shaping filter realizations.

We now establish a converse to Theorem 2 for the limiting case
in which ¢, approaches — .

Theorem 4

Let a shaping filter for r(t, 7) exist for all ¢. If the filter satisfies C2
and is L,JBO stable, then

1) lim X E[f3(¢, \, z)] = O for all { and =.

P TN

2) r(t, t) is bounded for all ¢.

Proof: Assumption C2 implies that for any z and &, there exists a
ug(+) and Asuch that \ — ¢ < T < o, and

(t, \, 2) = fe ht, myuel) dr,

for all £ > \. From the Schwarz inequality,

fz(t, N < _/: hz(t, 7)dr /; uﬁ(-r) dr.

The stability hypothesis and Theorem 1 imply that
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fmwﬁmgﬂﬁnﬁm

gfhmﬁmsc<m

for all ¢, and C2 implies that

’y
Ef@mmsM<m
13

for all £. Hence

A
W%ngth%ﬂm3M0<m

for all A < ¢, and
lim E[f*(t, A, 2)] = 0.

A —
This result in conjuction with (4) establishes the boundedness of
r(t, t) for all ¢ (and thus the boundedness of r(¢, =) for all { and = since
r(t, 7) is a covariance.)

The method used to bound the transient response in the proofs
of Theorems 3 and 4 is also applicable to systems subject to other
stability criteria such as bounded-input bounded-output stability.

We have shown above that input-output stability of a shaping
filter known to exist may be determined directly from the output
covariance function. Moreover, detailed knowledge of the impulse
response (or state-variable equations) of the shaping filter is not
required for the stability test. Since the results presented are inde-
pendent of the dimension of the system, the shaping filter may
contain distributed as well as lumped elements.
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